Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism

نویسندگان

  • Anna V. Golubeva
  • Susan A. Joyce
  • Gerard Moloney
  • Aurelijus Burokas
  • Eoin Sherwin
  • Silvia Arboleya
  • Ian Flynn
  • Dmitry Khochanskiy
  • Angela Moya-Pérez
  • Veronica Peterson
  • Kieran Rea
  • Kiera Murphy
  • Olga Makarova
  • Sergey Buravkov
  • Niall P. Hyland
  • Catherine Stanton
  • Gerard Clarke
  • Cormac G.M. Gahan
  • Timothy G. Dinan
  • John F. Cryan
چکیده

Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental conditions worldwide. There is growing awareness that ASD is highly comorbid with gastrointestinal distress and altered intestinal microbiome, and that host-microbiome interactions may contribute to the disease symptoms. However, the paucity of knowledge on gut-brain axis signaling in autism constitutes an obstacle to the development of precision microbiota-based therapeutics in ASD. To this end, we explored the interactions between intestinal microbiota, gut physiology and social behavior in a BTBR T+Itpr3tf/J mouse model of ASD. Here we show that a reduction in the relative abundance of very particular bacterial taxa in the BTBR gut - namely, bile-metabolizing Bifidobacterium and Blautia species, - is associated with deficient bile acid and tryptophan metabolism in the intestine, marked gastrointestinal dysfunction, as well as impaired social interactions in BTBR mice. Together these data support the concept of targeted manipulation of the gut microbiota for reversing gastrointestinal and behavioral symptomatology in ASD, and offer specific plausible targets in this endeavor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular Vesicles Derived from Gastrointestinal Microbiota: A New Approach to Clinical Studies

Extracellular vesicles, naturally released from all cell types including bacteria, are of great importance in medical microbiology due to transporting a variety of biomaterials, enzymes, and virulence factors, regulating immunity, and having roles in colonization and initiation of signaling pathways. These vesicles are also secreted from microbiota in the gastrointestinal tract and affect the h...

متن کامل

Diet-Microbiota Interactions: A New Approach to Personalized Nutrition

 Personalized nutrition is a new approach in medical sciences that is based on genetic profile, individual needs, and environmental conditions considering health status and chronic diseases of every person. Studies have shown that genetic differences cannot solely justify various responses to medications and diets, and other important factors including gut microbiota are also involved. Human bo...

متن کامل

Interaction between Intestinal Microbiota and Serotonin Metabolism

Gut microbiota regulates the production of signaling molecules, such as serotonin or 5-Hydroxytryptamine: 5-HT in the host. Serotonin is a biogenic amine that acts as a neurotransmitter in the gut and brain. There is a perfect interaction between human gastrointestinal microbiota and the serotonin system. The gut microbiota plays an important role in the serotonin signaling pathways through the...

متن کامل

The importance of the microbiome and metabolome in health and disease of dogs and cats

The canine intestinal tract harbors a highly complex microbial ecosystem. Various studies have reported changes in microbial communities in acute and chronic gastrointestinal diseases, especially in inflammatory bowel disease (IBD) and acute diarrhea. Most commonly observed are decreases in the bacterial phyla Firmicutes (i.e., Lachnospiraceae, Ruminococcaceae, Faecalibacterium) and Bacteroidet...

متن کامل

Changes in the composition and function of the gut microbiota in celiac disease

Evidence is supported the hypothesis that any changes in the composition and function of the gut microbiota play a fundamental role in a number of chronic inflammatory diseases including celiac disease (CD). In the last decade, several culture-independent methods have been developed to identify the components of the human microbiome. The study of microbiota based on nucleic acid analysis found ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017